SMOOTH FUNCTIONS VANISHING ON A SUBMANIFOLD

Lemma. Let (t,x), where $t=(t_1,\cdots,t_d)$, $x=(x_1,\cdots,x_m)$, be the standard coordinates of \mathbb{R}^{d+m} . Suppose that f is a C^{∞} function defined on a neighborhood of the origin such that f(0,x)=0. Then $f(t,x)=\sum_{j=1}^d t_j g^j(t,x)$, for some C^{∞} functions g^1,\cdots,g^d defined on a smaller neighborhood of the origin.

Proof

$$f(t,x) = \int_0^1 \frac{\partial}{\partial \tau} f(\tau t, x) d\tau$$

$$= \int_0^1 \sum_{j=0}^d t_j f_j(\tau t, x) d\tau, \quad \text{where } f_j = \frac{\partial f}{\partial t_j}$$

$$= \sum_{j=1}^d t_j \int_0^1 f_j(\tau t, x) d\tau.$$

Let $g^j(t,x) = \int_0^1 f_j(\tau t,x) d\tau$, for each $j=1,\cdots,d$. Then it is standard to show that g^j are C^{∞} . \square