SMOOTH FUNCTIONS VANISHING ON A SUBMANIFOLD

Lemma. Let (t, x), where $t = (t_1, \dots, t_d)$, $x = (x_1, \dots, x_m)$, be the standard coordinates of \mathbb{R}^{d+m} . Suppose that f is a C^{∞} function defined on a neighborhood of the origin such that f(0, x) = 0. Then $f(t, x) = \sum_{j=1}^{d} t_j g^j(t, x)$, for some C^{∞} functions g^1, \dots, g^d defined on a smaller neighborhood of the origin.

Proof

$$f(t,x) = \int_0^1 \frac{\partial}{\partial \tau} f(\tau t, x) d\tau$$

= $\int_0^1 \sum_{j=0}^d t_j f_j(\tau t, x) d\tau$, where $f_j = \frac{\partial f}{\partial t_j}$
= $\sum_{j=1}^d t_j \int_0^1 f_j(\tau t, x) d\tau$.

Let $g^j(t,x) = \int_0^1 f_j(\tau t,x) d\tau$, for each $j = 1, \dots, d$. Then it is standard to show that g^j are C^{∞} . \Box